Tf alloc - Simplication of GPU allocation for Tensorflow2

Related tags

Deep Learningtf_alloc
Overview

tf_alloc

Simpliying GPU allocation for Tensorflow

  • Developer: korkite (Junseo Ko)

Installation

pip install tf-alloc

⭐️ Why tf_alloc? Problems?

  • Compare to pytorch, tensorflow allocate all GPU memory to single training.
  • However, it is too much waste because, some training does not use whole GPU memory.
  • To solve this problem, TF engineers use two methods.
  1. Limit to use only single GPU
  2. Limit the use of only a certain percentage of GPUs.
  • However, these methods require complex code and memory management.

⭐️ Why tf_alloc? How to solve?

tf_alloc simplfy and automate GPU allocation using two methods.

⭐️ How to allocate?

  • Before using tf_alloc, you have to install tensorflow fits for your environment.
  • This library does not install specific tensorflow version.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""

It is only code for allocating GPU in certain percentage.

Parameters:

  • gpu = which gpu you want to use (if you have two gpu than [0, 1] is possible)
  • percentage = the percentage of memory usage on single gpu. 1.0 for maximum use.

⭐️ Additional Function.

GET GPU Objects

gpu_objs = get_gpu_objects()
  • To use this code, you can get gpu objects that contains gpu information.
  • You can set GPU backend by using this function.

GET CURRENT STATE

Defualt
current(
    gpu_id = False, 
    total_memory=False, 
    used = False, 
    free = False, 
    percentage_of_use = False,
    percentage_of_free = False,
)
  • You can use this functions to see current GPU state and possible maximum allocation percentage.
  • Without any parameters, than it only visualize possible maximum allocation percentage.
  • It is cmd line visualizer. It doesn't return values.

Parameters

  • gpu_id = visualize the gpu id number
  • total_memory = visualize the total memory of GPU
  • used = visualize the used memory of GPU
  • free = visualize the free memory of GPU
  • percentage_of_used = visualize the percentage of used memory of GPU
  • percentage_of_free = visualize the percentage of free memory of GPU

한국어는 간단하게!

설치

pip install tf-alloc

문제정의:

  • 텐서플로우는 파이토치와 다르게 훈련시 GPU를 전부 할당해버립니다.
  • 그러나 실제로 GPU를 모두 사용하지 않기 때문에 큰 낭비가 발생합니다.
  • 이를 막기 위해 두가지 방법이 사용되는데
  1. GPU를 1개만 쓰도록 제한하기
  2. GPU에서 특정 메모리만큼만 사용하도록 제한하기
  • 이 두가지 입니다. 그러나 이 방법을 위해선 복잡한 코드와 메모리 관리가 필요합니다.

해결책:

  • 이것을 해결하기 위해 자동으로 몇번 GPU를 얼만큼만 할당할지 정해주는 코드를 만들었습니다.
  • 함수 하나만 사용하면 됩니다.
# On the top of the code
from tf_alloc import allocate as talloc
talloc(gpu=1, percentage=0.5)

import tensorflow as tf
""" your code"""
  • 맨위에 tf_alloc에서 allocate함수를 불러다가 gpu파라미터와 percentage 파라미터를 주어 호출합니다.
  • 그러면 자동으로 몇번의 GPU를 얼만큼의 비율로 사용할지 정해서 할당합니다.
  • 매우 쉽습니다.

파라미터 설명

  • gpu = 몇범 GPU를 쓸 것인지 GPU의 아이디를 넣어줍니다. (만약 gpu가 2개 있다면 0, 1 이 아이디가 됩니다.)

  • percentage = 선택한 GPU를 몇의 비율로 쓸건지 정해줍니다. (1.0을 넣으면 해당 GPU를 전부 씁니다)

  • 만약 percentage가 몇인지 모른다면 0에서 1 사이의 값을 넣어서 할당해보면 최대 사용가능량이 얼만큼이라고 에러를 출력하니까 걱정없이 사용하시면 됩니다. 다른 훈련에 방해를 주지 않기 때문에, nvidia-smi를 쳐가면서 할당을 하는 것보다 매우 안정적입니다.

  • 핵심기능만 한국어로 써 놓았고, 다른 기능은 영문버전을 확인해보시면 감사하겠습니다.

Owner
Junseo Ko
🙃 AI Engineer 😊
Junseo Ko
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022