Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Overview

Memory-Efficient Multi-Level In-Situ Generation (MLG)

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation".

Introduction

MLG is a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations, directly translating to performance improvement. MLG explores the intrinsic correlations and bit-level redundancy within DNN kernels and propose a multi-level in situ generation mechanism with mixed-precision bases to achieve on-the-fly recovery of high-resolution parameters with minimum hardware overhead. MLG can boost the memory efficiency by 10-20× with comparable accuracy over four state-of-theart designs, when benchmarked on ResNet-18/DenseNet121/MobileNetV2/V3 with various tasks

flow

We explore intra-kernel and cross-kernel correlation in the accuracy (blue curve) and memory compression ratio (black curve) space with ResNet18/CIFAR-10. Our method generalizes prior DSConv and Blueprint Conv with better efficiency-performance trade-off. teaser

On CIFAR-10/100 and ResNet-18/DenseNet-121, we surpass prior low-rank methods with 10-20x less weight storage cost. exp

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.2. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • mlg_conv2d and mlg_linear: MLG layer definition
      • resnet.py: MLG-based ResNet definition
      • model_base.py: base model definition with all model utilities
    • builder.py: build training utilities
  • configs: YAML-based config files
  • scripts/: contains experiment scripts
  • train.py: training logic

Usage

  • Pretrain teacher model.
    > python3 train.py configs/cifar10/resnet18/train/pretrain.yml

  • Train MLG-based student model with L2-norm-based projection, knowledge distillation, multi-level orthonormality regularization, (Bi, Bo, qb, qu, qv) = (2, 44, 3, 6, 3).
    > python3 train.py configs/cifar10/resnet18/train/train.yml --teacher.checkpoint=path-to-teacher-ckpt --mlg.projection_alg=train --mlg.kd=1 --mlg.base_in=2 --mlg.base_out=44 --mlg.basis_bit=3 --mlg.coeff_in_bit=6 --mlg.coeff_out_bit=3 --criterion.ortho_weight_loss=0.05

  • Scripts for experiments are in ./scripts. For example, to run teacher model pretraining, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/pretrain.py and run
    > python3 SCRIPT

  • To train ML-based student model with KD and projection, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/train.py (need to provide the pretrained teacher checkpoint) and run
    > python3 SCRIPT

Citing Memory-Efficient Multi-Level In-Situ Generation (MLG)

@inproceedings{gu2021MLG,
  title={Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Mingjie Liu and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Related Papers

  • Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen, David Z. Pan, "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation," ICCV, 2021. [paper | slides]
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022