A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Overview

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

1. 介绍

image

用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来去除重叠的 bbox。而 Confluence 则是利用曼哈顿距离作为 bbox 之间的重合度,并根据置信度加权的曼哈顿距离还作为最优 bbox 的选择依据。

2. 算法原理

2.1 曼哈顿距离

两点的曼哈顿距离就是坐标值插的 L1 范数:

image

推广到两个 bbox 对的哈曼顿距离则为:

image

该算法便是以曼哈顿距离作为两个 bbox 的重合度,曼哈顿距离小于一定值的的 bbox 则被认为是一个 cluster。

2.2 归一化

因为 bbox 有个各样的 size 和 position,所以直接计算曼哈顿距离就没有可比性,没有标准的度量。所以需要对其进行归一化:

image

2.3 置信度加权曼哈顿距离

NMS在去除重合 bbox 是仅考虑其置信度的高低,Condluence 则同时考虑了曼哈顿距离和置信度,构成一个置信度加权曼哈顿距离:

image

3. 算法实现

image

算法:

(1)针对每个类别挑出属于该类别的 bbox 集合 B

(2)遍历 B 中所有的 bbox bi,并计算 bi 和其他 boox的 曼哈顿距离 p,并归一化

2.1 选出 p < 2 的集合,作为一个 cluster,并计算加权曼哈顿距离 wp。 

2.2 在该 cluster 中挑选出最小的 wp 作为 bi 的 wp。 

(3)遍历完毕后,挑出 wp 最小的 bi 作为最优 bbox,添加进最终结果集合中,并将其从 B 去除

(4)把与最优 bbox 的曼哈顿距离小于阈值 MD 的的 bbox 从 B 中去除

(5)不断重复 (2) - (4),每次都选出一个最优 bbox,知道 B 为空

注意:

(1)原文伪代码第 5 行:optimalConfuence 初始化成一个比较大的值就可以,不一定要是 Ip

(2)原文伪代码第 12 行:应该是 Proximity / si

4. 实验结果

image

5. 代码解析

5.1 YOLOv3/4 的后处理

这个接口可以直接处理 YOLOv3/4 的 yolo 层的输出进行后处理

confluence_process(prediction, conf_thres=0.1, wp_thres=0.6)

支持多标签和单标签,并把数据重组后进行 confluence/NMS 处理

# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
    i, j = (x[:, 5:] > conf_thres).nonzero().t()
    x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
else:  # best class only
    conf, j = x[:, 5:].max(1, keepdim=True)
    x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

5.2 Confluence 算法

confluence(prediction, class_num, wp_thres=0.6)

给所有目标添加上序号

index = np.arange(0, len(prediction), 1).reshape(-1,1)
infos = np.concatenate((prediction, index), 1)

不同类别单独处理,并遍历所有的剩余目标集合 B,直到集合为空,对应上面伪代码的(1)-(2)

for c in range(class_num):       
    pcs = infos[infos[:, 5] == c]             
    while (len(pcs)):                      
        n = len(pcs)       
        xs = pcs[:, [0, 2]]
        ys = pcs[:, [1, 3]]             
        ps = []        
        # 遍历 pcs,计算每一个box 和其余 box 的 p 值,然后聚类成簇,再根据 wp 挑出 best
        confluence_min = 10000
        best = None
        for i, pc in enumerate(pcs):

计算所有目标与其他目标的曼和顿距离 p 和加权曼哈顿距离 wp,p < 2 的目标作为一个 cluster,其中最小的 wp 作为该 cluster 的 wp

index_other = [j for j in range(n) if j!= i]
x_t = xs[i]
x_t = np.tile(x_t, (n-1, 1))
x_other = xs[index_other]
x_all = np.concatenate((x_t, x_other), 1)
.
.
.
# wp
wp = p / pc[4]
wp = wp[p < 2]

if (len(wp) == 0):
    value = 0
else:
    value = wp.min()

选出最小的 wp,确定目标

# select the bbox which has the smallest wp as the best bbox
if (value < confluence_min):
   confluence_min = value
   best = i  

然后把与目标的曼哈顿距离小于阈值的目标和本身都从集合 B 中去除

keep.append(int(pcs[best][6])) 
if (len(ps) > 0):               
    p = ps[best]
    index_ = np.where(p < wp_thres)[0]
    index_ = [i if i < best else i +1 for i in index_]
else:
    index_ = []
    
# delect the bboxes whose Manhattan Distance is below the predefined MD
index_eff = [j for j in range(n) if (j != best and j not in index_)]            
pcs = pcs[index_eff]

最后继续重复遍历集合 B,直到集合为空。

仓库里我放了一张测试照片和原始检测结果,大家可以直接用来调试 confluence 函数。

Credits:

https://arxiv.org/pdf/2012.00257.pdf

Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022