SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

Related tags

Text Data & NLPSAVI2I
Overview

License CC BY-NC-SA 4.0 Python 3.6

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

[Paper] [Project Website]

Pytorch implementation for SAVI2I. We propose a simple yet effective signed attribute vector (SAV) that facilitates continuous translation on diverse mapping paths across multiple domains.
More video results please see Our Webpage
Contact: Qi Mao ([email protected])

Paper

Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors
Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Siwei Ma, and Ming-Hsuan Yang
In arXiv 2020

Citation

If you find this work useful for your research, please cite our paper:

    @article{mao2020continuous,
      author       = "Mao, Qi and Lee, Hsin-Ying and Tseng, Hung-Yu and Huang, Jia-Bin and Ma, Siwei and Yang, Ming-Hsuan",
      title        = "Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors",
      journal    = "arXiv preprint 2011.01215",
      year         = "2020"
    }

Quick Start

Prerequisites

  • Linux or Windows
  • Python 3+
  • Suggest to use two P100 16GB GPUs or One V100 32GB GPU.

Install

  • Clone this repo:
git clone https://github.com/HelenMao/SAVI2I.git
cd SAVI2I
  • This code requires Pytorch 0.4.0+ and Python 3+. Please install dependencies by
conda create -n SAVI2I python=3.6
source activate SAVI2I
pip install -r requirements.txt 

Training Datasets

Download datasets for each task into the dataset folder

./datasets
  • Style translation: Yosemite (summer <-> winter) and Photo2Artwork (Photo, Monet, Van Gogh and Ukiyo-e)
  • You can follow the instructions of CycleGAN datasets to download Yosemite and Photo2artwork datasets.
  • Shape-variation translation: CelebA-HQ (Male <-> Female) and AFHQ (Cat, Dog and WildLife)
  • We split CelebA-HQ into male and female domains according to the annotated label and fine-tune the images manaully.
  • You can follow the instructions of StarGAN-v2 datasets to download CelebA-HQ and AFHQ datasets.

Training

Notes

For low-level style translation tasks, you suggest to set --type=1 to use corresponding network architectures.
For shape-variation translation tasks, you suggest to set --type=0 to use corresponding network architectures.

  • Yosemite
python train.py --dataroot ./datasets/Yosemite/ --phase train --type 1 --name Yosemite --n_ep 700 --n_ep_decay 500 --lambda_r1 10 --lambda_mmd 1 --num_domains 2
  • Photo2artwork
python train.py --dataroot ./datasets/Photo2artwork/ --phase train --type 1 --name Photo2artwork --n_ep 100 --n_ep_decay 0 --lambda_r1 10 --lambda_mmd 1 --num_domains 4
  • CelebAHQ
python train.py --dataroot ./datasets/CelebAHQ/ --phase train --type 0 --name CelebAHQ --n_ep 30 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 1 --num_domains 2
  • AFHQ
python train.py --dataroot ./datasets/AFHQ/ --phase train --type 0 --name AFHQ --n_ep 100 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 10 --num_domains 3

Pre-trained Models

Download and save them into

./models

or download the pre-trained models with the following script.

bash ./download_models.sh

Testing

Reference-guided

python test_reference_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_ref  

Latent-guided

python test_latent_rdm_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_rdm  

License

All rights reserved.
Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International).
The codes are only for academical research use. For commercial use, please contact [email protected].

Acknowledgements

Codes and network architectures inspired from:

Owner
Qi Mao
PhD student in Institute of Digital Media, Peking University.
Qi Mao
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022