Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Overview

Training Script for Reuse-VOS

This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Hard case (Ours, FRTM)

sample ours hard (Ours)

sample FRTM hard (FRTM)

Easy case (Ours, FRTM)

sample ours easy(Ours)

sample FRTM easy(FRTM)

Requirement

python package

  • torch
  • python-opencv
  • skimage
  • easydict

GPU support

  • GPU Memory >= 11GB (RN18)
  • CUDA >= 10.0
  • pytorch >= 1.4.0

Datasets

DAVIS

To test the DAVIS validation split, download and unzip the 2017 480p trainval images and annotations here.

/path/DAVIS
|-- Annotations/
|-- ImageSets/
|-- JPEGImages/

YouTubeVOS

To test our validation split and the YouTubeVOS challenge 'valid' split, download YouTubeVOS 2018 and place it in this directory structure:

/path/ytvos2018
|-- train/
|-- train_all_frames/
|-- valid/
`-- valid_all_frames/

Release

DAVIS

model Backbone Training set J & F 17 J & F 16 link
G-FRTM (t=1) Resnet18 Youtube-VOS + DAVIS 71.7 80.9 Google Drive
G-FRTM (t=0.7) Resnet18 Youtube-VOS + DAVIS 69.9 80.5 same pth
G-FRTM (t=1) Resnet101 Youtube-VOS + DAVIS 76.4 84.3 Google Drive
G-FRTM (t=0.7) Resnet101 Youtube-VOS + DAVIS 74.3 82.3 same pth

Youtube-VOS

model Backbone Training set G J-S J-Us F-S F-Us link
G-FRTM (t=1) Resnet18 Youtube-VOS 63.8 68.3 55.2 70.6 61.0 Google Drive
G-FRTM (t=0.8) Resnet18 Youtube-VOS 63.4 67.6 55.8 69.3 60.9 same pth
G-FRTM (t=0.7) Resnet18 Youtube-VOS 62.7 67.1 55.2 68.2 60.1 same pth

We initialize orignal-FRTM layers from official FRTM repository weight for Youtube-VOS benchmark. S = Seen, Us = Unseen

Target model cache

Here is the cache file we used for ResNet18 file

Run

Train

Open train.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python train.py --name <session-name> --ftext resnet18 --dset all --dev cuda:0

--name is the name of save_dir name of current train --ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2017, ytvos2018 or all ("all" really means "both"). --dev is the name of the device to train on. --m1 is the margin1 for training reuse gate, and we use 1.0 for DAVIS benchmark and 0.5 for Youtube-VOS benchmark. --m2 is the margin2 for training reuse gate, and we use 0.

Replace "session-name" with whatever you like. Subdirectories with this name will be created under your checkpoint and tensorboard paths.

Eval

Open eval.py and adjust the paths dict to your dataset locations, checkpoint and tensorboard output directories and the place to cache target model weights.

To train a network, run following command.

python evaluate.py --ftext resnet18 --dset dv2017val --dev cuda:0

--ftext is the name of the feature extractor, either resnet18 or resnet101. --dset is one of dv2016val, dv2017val, yt2018jjval, yt2018val or yt2018valAll --dev is the name of the device to eval on. --TH Threshold for tau default= 0.7

The inference results will be saved at ${ROOT}/${result} . It is better to check multiple pth file for good accuracy.

Acknowledgement

This codebase borrows the code and structure from official FRTM repository. We are grateful to Facebook Inc. with valuable discussions.

Reference

The codebase is built based on following works

@misc{park2020learning,
      title={Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation}, 
      author={Hyojin Park and Jayeon Yoo and Seohyeong Jeong and Ganesh Venkatesh and Nojun Kwak},
      year={2020},
      eprint={2012.11655},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
HYOJINPARK
HYOJINPARK
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
TianyuQi 10 Dec 11, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021