Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

Overview

CuPyTorch

CuPyTorch是一个小型PyTorch,名字来源于:

  1. 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持cuda计算
  2. 发音与Cool PyTorch接近,因为使用不超过1000行纯Python代码实现PyTorch确实很cool

CuPyTorch支持numpy和cupy两种计算后端,实现大量PyTorch常用功能,力求99%兼容PyTorch语法语义,并能轻松扩展,以下列出已经完成的功能:

  • tensor:

    • tensor: 创建张量
    • arange: 区间等差张量
    • stack: 堆叠张量
    • ones/zeros, ones/zeros_like: 全1/0张量
    • rand/randn, rand/randn_like: 0~1均匀分布/高斯分布张量
    • +, -, *, /, @, **: 双目数值运算及其右值和原地操作
    • >, <, ==, >=, <=, !=: 比较运算
    • &, |, ^: 双目逻辑运算
    • ~, -: 取反/取负运算
    • []: 基本和花式索引和切片操作
    • abs, exp, log, sqrt: 数值运算
    • sum, mean: 数据归约操作
    • max/min, amax/amin, argmax/argmin: 最大/小值及其索引计算
  • autograd: 支持以上所有非整数限定运算的自动微分

  • nn:

    • Module: 模型基类,管理参数,格式化打印
    • activation: ReLU, GeLU, Sigmoid, Tanh, Softmax, LogSoftmax
    • loss: L1Loss, MSELoss, NLLLoss, CrossEntropyLoss
    • layer: Linear, Dropout ,LSTM
  • optim:

    • Optimizer: 优化器基类,管理参数,格式化打印
    • SGD, Adam: 两个最常见的优化器
    • lr_scheduler: LambdaLRStepLR学习率调度器
  • utils.data:

    • DataLoader: 批量迭代Tensor数据,支持随机打乱
    • Dataset: 数据集基类,用于继承
    • TensorDataset: 纯用Tensor构成的数据集

cloc的代码统计结果:

Language files blank comment code
Python 22 353 27 992

自动微分示例:

import cupytorch as ct

a = ct.tensor([[-1., 2], [-3., 4.]], requires_grad=True)
b = ct.tensor([[4., 3.], [2., 1.]], requires_grad=True)
c = ct.tensor([[1., 2.], [0., 2.]], requires_grad=True)
d = ct.tensor([1., -2.], requires_grad=True)
e = a @ b.T
f = (c.max(1)[0].exp() + e[:, 0] + b.pow(2) + 2 * d.reshape(2, 1).abs()).mean()
print(f)
f.backward()
print(a.grad)
print(b.grad)
print(c.grad)
print(d.grad)

# tensor(18.889057, grad_fn=<MeanBackward>)
# tensor([[2.  1.5]
#         [2.  1.5]])
# tensor([[0.  4.5]
#         [1.  0.5]])
# tensor([[0.       3.694528]
#         [0.       3.694528]])
# tensor([ 1. -1.])

手写数字识别示例:

from pathlib import Path
import cupytorch as ct
from cupytorch import nn
from cupytorch.optim import SGD
from cupytorch.optim.lr_scheduler import StepLR
from cupytorch.utils.data import TensorDataset, DataLoader


class Net(nn.Module):
    
    def __init__(self, num_pixel: int, num_class: int):
        super().__init__()
        self.num_pixel = num_pixel
        self.fc1 = nn.Linear(num_pixel, 256)
        self.fc2 = nn.Linear(256, 64)
        self.fc3 = nn.Linear(64, num_class)
        self.act = nn.ReLU()
        self.drop = nn.Dropout(0.1)
    
    def forward(self, input: ct.Tensor) -> ct.Tensor:
        output = input.view(-1, self.num_pixel)
        output = self.drop(self.act(self.fc1(output)))
        output = self.drop(self.act(self.fc2(output)))
        return self.fc3(output)


def load(path: Path):
    # define how to load data as tensor
    pass


path = Path('../datasets/MNIST')
train_dl = DataLoader(TensorDataset(load(path / 'train-images-idx3-ubyte.gz'),
                                    load(path / 'train-labels-idx1-ubyte.gz')),
                      batch_size=20, shuffle=True)
test_dl = DataLoader(TensorDataset(load(path / 't10k-images-idx3-ubyte.gz'),
                                   load(path / 't10k-labels-idx1-ubyte.gz')),
                     batch_size=20, shuffle=False)
model = Net(28 * 28, 10)
criterion = nn.CrossEntropyLoss()
optimizer = SGD(model.parameters(), lr=1e-3, momentum=0.9)
scheduler = StepLR(optimizer, 5, 0.5)

print(model)
print(optimizer)
print(criterion)

for epoch in range(10):
    losses = 0
    for step, (x, y) in enumerate(train_dl, 1):
        optimizer.zero_grad()
        z = model(x)
        loss = criterion(z, y)
        loss.backward()
        optimizer.step()
        losses += loss.item()
        if step % 500 == 0:
            losses /= 500
            print(f'Epoch: {epoch}, Train Step: {step}, Train Loss: {losses:.6f}')
            losses = 0
    scheduler.step()

examples文件夹中提供了两个完整示例:

  • MNIST数据集上使用MLP做手写数字分类
  • NN5数据集上使用LSTM做ATM机取款预测

参考:

Owner
Xingkai Yu
Xingkai Yu
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022