Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

Related tags

Deep Learningdeepbay
Overview

made-with-python Development Status GitHub version Last Commit

DeepBay

This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures must be provided as a ready-to-use Plug-and-Play module that can be easily integrated into any existing project or architecture design.

Installation

You can use pip for install this from PyPi:

pip install deepbay

Quick Start

You can use any architecture inside deepbay as an self-contained model ready to be trained:

import tensorflow as tf
import deepbay

denseblock = deepbay.DenseBlock(units=1)

Or you can integrate it to any existing architecture, just use it as any other keras layer:

import tensorflow as tf
import deepbay

model = tf.keras.models.Sequential()
model.add(deepbay.DenseBlock(units=1))

Keep an eye on input/output shapes, you can found them in the class documentation inside every module

You might also like...
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

A deep learning network built with TensorFlow and Keras to classify gender and estimate age.
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Comments
  • WARNING:tensorflow:Gradients do not exist for variables

    WARNING:tensorflow:Gradients do not exist for variables

    When Training a DenseBlock instance, it output this warning:

    WARNING:tensorflow:Gradients do not exist for variables ['dense_block_1/batch_normalization_1/gamma:0', 'dense_block_1/batch_normalization_1/beta:0'] when minimizing 
    the loss.
    

    It is caused by the Bath Normalization layer, check what is going on.

    bug 
    opened by elpapi42 0
Releases(v0.8.3)
Owner
Whitman Bohorquez
Backend, APIs, Microservices, DDD, Clean Architectures, DevOps, Data Science and Deep Learning. All that stuff you already know exists, Mixed.
Whitman Bohorquez
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
113 Nov 28, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Free course that takes you from zero to Reinforcement Learning PRO ๐Ÿฆธ๐Ÿปโ€๐Ÿฆธ๐Ÿฝ

The Hands-on Reinforcement Learning course ๐Ÿš€ From zero to HERO ๐Ÿฆธ๐Ÿปโ€๐Ÿฆธ๐Ÿฝ Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service ยป Home page ยท Team notion ยท Members ๋ชฉ์ฐจ ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ํ”„๋กœ์ ํŠธ ๋ชฉํ‘œ ์‚ฌ์šฉํ•œ ๊ธฐ์ˆ ์Šคํƒ๊ณผ ์ˆ˜ํ–‰๋„๊ตฌ ํŒ€์› ๊ตฌํ˜„ ๊ธฐ๋Šฅ ์ฃผ์š” ๊ธฐ๋Šฅ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ

LiJell 7 Jul 14, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022