Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Overview

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021)

스크린샷 2021-08-21 오후 3 30 22

Dataset License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

[Project site] [Arxiv] [Download Dataset] [Video]

This is an official repository of "Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination", which is accepted as a poster in ICCV 2021.

This repository provides

  1. Preprocessing code of "Large Scale Multi Illuminant (LSMI) Dataset"
  2. Code of Pixel-level illumination inference U-Net
  3. Pre-trained model parameter for testing U-Net

Requirements

Our running environment is as follows:

  • Python version 3.8.3
  • Pytorch version 1.7.0
  • CUDA version 11.2

We provide a docker image, which supports all extra requirements (ex. dcraw,rawpy,tensorboard...), including specified version of python, pytorch, CUDA above.

You can download the docker image here.

The following instructions are assumed to run in a docker container that uses the docker image we provided.

Getting Started

Clone this repo

In the docker container, clone this repository first.

git clone https://github.com/DY112/LSMI-dataset.git

Download the LSMI dataset

You should first download the LSMI dataset from here.

The dataset is composed of 3 sub-folers named "galaxy", "nikon", "sony".

Folders named by each camera include several scenes, and each scene folder contains full-resolution RAW files and JPG files that is converted to sRGB color space.

Move all three folders to the root of cloned repository.

Preprocess the LSMI dataset

  1. Convert raw images to tiff files

    To convert original 1-channel bayer-pattern images to 3-channel RGB tiff images, run following code:

    python 0_cvt2tiff.py

    You should modify SOURCE and EXT variables properly.

    The converted tiff files are generated at the same location as the source file.

  2. Make mixture map

    python 1_make_mixture_map.py

    Change the CAMERA variable properly to the target directory you want.

    .npy tpye mixture map data will be generated at each scene's directory.

  3. Crop

    python 2_preprocess_data.py

    The image and the mixture map are resized as a square with a length of the SIZE variable inside the code, and the ground-truth image is also generated.

    We set the size to 256 to test the U-Net, and 512 for train the U-Net.

    Here, to test the pre-trained U-Net, set size to 256.

    The new dataset is created in a folder with the name of the CAMERA_SIZE. (Ex. galaxy_256)

Use U-Net for pixel-level AWB

You can download pre-trained model parameter here.

Pre-trained model is trained on 512x512 data with random crop & random pixel level relighting augmentation method.

Locate downloaded models folder into SVWB_Unet.

  • Test U-Net

    cd SVWB_Unet
    sh test.sh
  • Train U-Net

    cd SVWB_Unet
    sh train.sh
Owner
DongYoung Kim
Research Assistant of CIPLAB
DongYoung Kim
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022