Pytorch version of SfmLearner from Tinghui Zhou et al.

Overview

SfMLearner Pytorch version

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details.

Original Author : Tinghui Zhou ([email protected]) Pytorch implementation : Clément Pinard ([email protected])

sample_results

Preamble

This codebase was developed and tested with Pytorch 1.0.1, CUDA 10 and Ubuntu 16.04. Original code was developped in tensorflow, you can access it here

Prerequisite

pip3 install -r requirements.txt

or install manually the following packages :

pytorch >= 1.0.1
pebble
matplotlib
imageio
scipy
argparse
tensorboardX
blessings
progressbar2
path.py

Note

Because it uses latests pytorch features, it is not compatible with anterior versions of pytorch.

If you don't have an up to date pytorch, the tags can help you checkout the right commits corresponding to your pytorch version.

What has been done

  • Training has been tested on KITTI and CityScapes.
  • Dataset preparation has been largely improved, and now stores image sequences in folders, making sure that movement is each time big enough between each frame
  • That way, training is now significantly faster, running at ~0.14sec per step vs ~0.2s per steps initially (on a single GTX980Ti)
  • In addition you don't need to prepare data for a particular sequence length anymore as stacking is made on the fly.
  • You can still choose the former stacked frames dataset format.
  • Convergence is now almost as good as original paper with same hyper parameters
  • You can know compare with groud truth for your validation set. It is still possible to validate without, but you now can see that minimizing photometric error is not equivalent to optimizing depth map.

Differences with official Implementation

  • Smooth Loss is different from official repo. Instead of applying it to disparity, we apply it to depth. Original disparity smooth loss did not work well (don't know why !) and it did not even converge at all with weight values used (0.5).
  • loss is divided by 2.3 when downscaling instead of 2. This is the results of empiric experiments, so the optimal value is clearly not carefully determined.
  • As a consequence, with a smooth loss of 2.0̀, depth test is better, but Pose test is worse. To revert smooth loss back to original, you can change it here

Preparing training data

Preparation is roughly the same command as in the original code.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command. The --with-depth option will save resized copies of groundtruth to help you setting hyper parameters. The --with-pose will dump the sequence pose in the same format as Odometry dataset (see pose evaluation)

python3 data/prepare_train_data.py /path/to/raw/kitti/dataset/ --dataset-format 'kitti' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 128 --num-threads 4 [--static-frames /path/to/static_frames.txt] [--with-depth] [--with-pose]

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. You will probably need to contact the administrators to be able to get it. Then run the following command

python3 data/prepare_train_data.py /path/to/cityscapes/dataset/ --dataset-format 'cityscapes' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 171 --num-threads 4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python3 train.py /path/to/the/formatted/data/ -b4 -m0.2 -s0.1 --epoch-size 3000 --sequence-length 3 --log-output [--with-gt]

You can then start a tensorboard session in this folder by

tensorboard --logdir=checkpoints/

and visualize the training progress by opening https://localhost:6006 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~30K iterations when training on KITTI.

Evaluation

Disparity map generation can be done with run_inference.py

python3 run_inference.py --pretrained /path/to/dispnet --dataset-dir /path/pictures/dir --output-dir /path/to/output/dir

Will run inference on all pictures inside dataset-dir and save a jpg of disparity (or depth) to output-dir for each one see script help (-h) for more options.

Disparity evaluation is avalaible

python3 test_disp.py --pretrained-dispnet /path/to/dispnet --pretrained-posenet /path/to/posenet --dataset-dir /path/to/KITTI_raw --dataset-list /path/to/test_files_list

Test file list is available in kitti eval folder. To get fair comparison with Original paper evaluation code, don't specify a posenet. However, if you do, it will be used to solve the scale factor ambiguity, the only ground truth used to get it will be vehicle speed which is far more acceptable for real conditions quality measurement, but you will obviously get worse results.

Pose evaluation is also available on Odometry dataset. Be sure to download both color images and pose !

python3 test_pose.py /path/to/posenet --dataset-dir /path/to/KITIT_odometry --sequences [09]

ATE (Absolute Trajectory Error) is computed as long as RE for rotation (Rotation Error). RE between R1 and R2 is defined as the angle of R1*R2^-1 when converted to axis/angle. It corresponds to RE = arccos( (trace(R1 @ R2^-1) - 1) / 2). While ATE is often said to be enough to trajectory estimation, RE seems important here as sequences are only seq_length frames long.

Pretrained Nets

Avalaible here

Arguments used :

python3 train.py /path/to/the/formatted/data/ -b4 -m0 -s2.0 --epoch-size 1000 --sequence-length 5 --log-output --with-gt

Depth Results

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.181 1.341 6.236 0.262 0.733 0.901 0.964

Pose Results

5-frames snippets used

Seq. 09 Seq. 10
ATE 0.0179 (std. 0.0110) 0.0141 (std. 0.0115)
RE 0.0018 (std. 0.0009) 0.0018 (std. 0.0011)

Discussion

Here I try to link the issues that I think raised interesting questions about scale factor, pose inference, and training hyperparameters

  • Issue 48 : Why is target frame at the center of the sequence ?
  • Issue 39 : Getting pose vector without the scale factor uncertainty
  • Issue 46 : Is Interpolated groundtruth better than sparse groundtruth ?
  • Issue 45 : How come the inverse warp is absolute and pose and depth are only relative ?
  • Issue 32 : Discussion about validation set, and optimal batch size
  • Issue 25 : Why filter out static frames ?
  • Issue 24 : Filtering pixels out of the photometric loss
  • Issue 60 : Inverse warp is only one way !

Other Implementations

TensorFlow by tinghuiz (original code, and paper author)

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021