audioLIME: Listenable Explanations Using Source Separation

Overview

audioLIME

This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music information retrival (MIR). audioLIME is based on the method lime (local interpretable model-agnostic explanations) work presented in this paper and uses source separation estimates in order to create interpretable components.

Citing

If you use audioLIME in your work, please cite it:

@misc{haunschmid2020audiolime,
    title={{audioLIME: Listenable Explanations Using Source Separation}},
    author={Verena Haunschmid and Ethan Manilow and Gerhard Widmer},
    year={2020},
    eprint={2008.00582},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    howpublished={13th International Workshop on Machine Learning and Music}
}

Publications

audioLIME is introduced/used in the following publications:

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, audioLIME: Listenable Explanations Using Source Separation

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, Towards Musically Meaningful Explanations Using Source Separation

Installation

The audioLIME package is not on PyPI yet. For installing it, clone the git repo and install it using setup.py.

git clone https://github.com/CPJKU/audioLIME.git  # HTTPS
git clone [email protected]:CPJKU/audioLIME.git  # SSH
cd audioLIME
python setup.py install

To install a version for development purposes check out this article.

Tests

To test your installation, the following test are available:

python -m unittest tests.test_SpleeterFactorization

python -m unittest tests.test_DataProviders

Note on Requirements

To keep it lightweight, not all possible dependencies are contained in setup.py. Depending on the factorization you want to use, you might need different packages, e.g. nussl or spleeter.

Installation & Usage of spleeter

pip install spleeter==2.0.2

When you're using spleeter for the first time, it will download the used model in a directory pretrained_models. You can only change the location by setting an environment variable MODEL_PATH before spleeter is imported. There are different ways to set an environment variable, for example:

export MODEL_PATH=/share/home/verena/experiments/spleeter/pretrained_models/

Available Factorizations

Currently we have the following factorizations implemented:

  • SpleeterFactorization based on the source separation system spleeter (code)
  • SoundLIMEFactorization: time-frequency segmentation based on SoundLIME (the original implementation was not flexible enough for our experiments)

Usage Example

Here we demonstrate how we can explain the prediction of FCN (code, Choi 2016, Won 2020) using SpleeterFactorization.

For this to work you need to install the requirements found in the above mentioned repo of the tagger and spleeter:

pip install -r examples/requirements.txt
    data_provider = RawAudioProvider(audio_path)
    spleeter_factorization = SpleeterFactorization(data_provider,
                                                   n_temporal_segments=10,
                                                   composition_fn=None,
                                                   model_name='spleeter:5stems')

    explainer = lime_audio.LimeAudioExplainer(verbose=True, absolute_feature_sort=False)

    explanation = explainer.explain_instance(factorization=spleeter_factorization,
                                             predict_fn=predict_fn,
                                             top_labels=1,
                                             num_samples=16384,
                                             batch_size=32
                                             )

For the details on setting everything up, see example_using_spleeter_fcn.

Listen to the input and explanation.

TODOs

  • upload to pypi.org (to allow installation via pip)
  • usage example for SoundLIMEFactorization
  • tutorial in form of a Jupyter Notebook
  • more documentation
You might also like...
Offical implementation for
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Source-to-Source Debuggable Derivatives in Pure Python
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

This repository contains the source code for the paper
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

Releases(v0.0.3)
Owner
Institute of Computational Perception
Johannes Kepler University
Institute of Computational Perception
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022