Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Overview

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

MIT License

English | 中文

Now we provide inferencing code and pre-training models. You could generate any text sounds you want.

The model training only uses the corpus of neutral emotion, and does not use any strongly emotional speech.

There are still great challenges in out-of-domain style transfer. Limited by the training corpus, it is difficult for the speaker-embedding or unsupervised style learning (like GST) methods to imitate the unseen data.

With the help of Unet network and AdaIN layer, our proposed algorithm has powerful speaker and style transfer capabilities.

Infer code or Colab notebook

Demo results

Paper link


😄 The authors are preparing simple, clear, and well-documented training process of Unet-TTS based on Aishell3. It contains:

  • MFA-based duration alignment
  • Multi-speaker TTS with speaker_embedding-Instance-Normalization, and this model provides pre-training Content Encoder.
  • Unet-TTS training
  • One-shot Voice cloning inference
  • C++ inference

Stay tuned!


Install Requirements

  • Install the appropriate TensorFlow and tensorflow-addons versions according to CUDA version.
  • The default is TensorFlow 2.6 and tensorflow-addons 0.14.0.
pip install TensorFlowTTS

Usage

  • see file UnetTTS_syn.py or notebook
CUDA_VISIBLE_DEVICES=0 python UnetTTS_syn.py
from UnetTTS_syn import UnetTTS

models_and_params = {"duration_param": "train/configs/unetts_duration.yaml",
                    "duration_model": "models/duration4k.h5",
                    "acous_param": "train/configs/unetts_acous.yaml",
                    "acous_model": "models/acous12k.h5",
                    "vocoder_param": "train/configs/multiband_melgan.yaml",
                    "vocoder_model": "models/vocoder800k.h5"}

feats_yaml = "train/configs/unetts_preprocess.yaml"

text2id_mapper = "models/unetts_mapper.json"

Tts_handel = UnetTTS(models_and_params, text2id_mapper, feats_yaml)

#text: input text
#src_audio: reference audio
#dur_stat: phoneme duration statistis to contraol speed rate
syn_audio, _, _ = Tts_handel.one_shot_TTS(text, src_audio, dur_stat)

Reference

https://github.com/TensorSpeech/TensorFlowTTS

https://github.com/CorentinJ/Real-Time-Voice-Cloning

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Rhasspy 8 Dec 25, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022