PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Overview

Full-Body Visual Self-Modeling of Robot Morphologies

Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson
Columbia University

Project Website | Video | Paper

Overview

This repo contains the PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

teaser

Citation

If you find our paper or codebase helpful, please consider citing:

@article{chen2021morphology,
  title={Full-Body Visual Self-Modeling of Robot Morphologies},
  author={Chen, Boyuan and Kwiatkowskig, Robert and Vondrick, Carl and Lipson, Hod},
  journal={arXiv preprint arXiv:2111.06389},
  year={2021}
}

Content

Installation

Our code has been tested on Ubuntu 18.04 with CUDA 11.0. Create a python3.6 virtual environment and install the dependencies.

virtualenv -p /usr/bin/python3.6 env-visual-selfmodeling
source env-visual-selfmodeling/bin/activate
cd visual-selfmodeling
pip install -r requirements.txt

You may also need to run the following two lines to specify the correct cuda path for pycuda and nvcc.

export PATH=/usr/local/cuda-11.0/bin:$PATH
export PATH=/usr/local/cuda-11.0/bin:${PATH:+${PATH}}

To run the evaluation metrics, please install the additional package with the following line.

python setup.py build_ext --inplace

Data Preparation

Run the following commands to generate the simulated data in Pybullet.

cd visual-selfmodeling
python sim.py

This will generate the mesh files in a folder named saved_meshes under current directory. A robot_state.json file will also be generated in saved_meshes folder to store the corresponding joint angles.

Then generate the pointcloud with normals.

ipython3
from utils import common
common.convert_ply_to_xyzn(folder='./saved_meshes')

About Configs and Logs

Before training and evaluation, we first introduce the configuration and logging structure.

Configs: all the specific parameters used for training and evaluation are indicated in ./configs/state_condition/config1.yaml. If you would like to play with other parameters, feel free to copy the existing config file and modify it. You will then just need to change the config file path in the following training steps to point to the new configuration file.

To train the self-model which also predicts the end effector position together with our visual self-model, please use ./configs/state_condition_kinematic/config1.yaml.

To train the self-model which only predicts the end effector from scratch, without out visual self-model, please use ./configs/state_condition_kinematic_scratch/config1.yaml.

If you save the data to other directories, please make sure the data_filepath argument in each config file points to the correct path.

Logs: both the training and evaluation results will be saved in the log folder for each experiment. The log folders will be located under ./scripts folder. The last digit in the logs folder indicates the random seed. Inside the logs folder, the structure and contents are:

```
\logs_True_False_False_image_conv2d-encoder-decoder_True_{output_representation}_{seed}
    \lightning_logs
        \checkpoints          [saved checkpoint]
        \version_0            [training stats]
    \predictions              [complete predicted meshes before normalization]
    \predictions_denormalized [complete predicted meshes after normalization]
```

Training

To train our visual self-model, run the following command.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition/config1.yaml NA;

To use our pre-trained self-model to train a small network to predict end-effector position, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic/config1.yaml kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

To train the baseline model that predicts end-effector position from scratch, without using our visual self-model, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic_scratch/config1.yaml kinematic-scratch NA;

Evaluation

To evaluate the predicted meshes and compare with baselines, run the following commands.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition/config1.yaml ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-state-condition;

cd utils;
python eval_mesh.py ../configs/state_condition/config1.yaml model;
python eval_mesh.py ../configs/state_condition/config1.yaml nearest-neighbor;
python eval_mesh.py ../configs/state_condition/config1.yaml random;

CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition_kinematic/config1.yaml ./logs_state-condition-kinematic_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

CUDA_VISIBLE_DEVICES=4 python ../eval.py ../configs/state_condition_kinematic_scratch/config1.yaml ./logs_state-condition-kinematic-scratch_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic;

License

This repository is released under the MIT license. See LICENSE for additional details.

Reference

Owner
Boyuan Chen
CS Ph.D. student at Columbia University.
Boyuan Chen
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022