BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

Related tags

Data AnalysisDev
Overview

BinTuner

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis research in generating more diversified datasets for training and testing. The BinTuner framework is based on OpenTuner, thanks to all contributors for their contributions.

The architecture of BinTuner:

image

The core on the server-side is a metaheuristic search engine (e.g., the genetic algorithm), which directs iterative compilation towards maximizing the effect of binary code differences.

The client-side runs different compilers (GCC, LLVM ...) and the calculation of the fitness function.

Both sides communicate valid optimization options, fitness function scores, and compiled binaries to each other, and these data are stored in a database for future exploration. When BinTuner reaches a termination condition, we select the iterations showing the highest fitness function score and output the corresponding binary code as the final outcomes.

System dependencies

A list of system dependencies can be found in packages-deps which are primarily python 2.6+ (not 3.x) and sqlite3.

On Ubuntu/Debian there can be installed with:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install `cat packages-deps | tr '\n' ' '`

Installation

Running it out of a git checkout, a list of python dependencies can be found in requirements.txt these can be installed system-wide with pip.

sudo apt-get install python-pip
sudo pip install -r requirements.txt

If you encounter an error message like this:

Could not find a version that satisfies the requirement fn>=0.2.12 (from -r requirements.txt (line 2)) (from versions:)
No matching distribution found for fn>=0.2.12 (from -r requirements.tet (line 2))

Please try again or install each manually

pip install fn>=0.2.12
...
pip install numpy>=1.8.0
...

If you encounter an error message like this:

ImportError: No module named lzma

Please install lzma

sudo apt-get install python-lzma

If you encounter an error message like this:

assert compile_result['returncode'] == 0
AssertionError

Please confirm how to use the compiler in your terminal, such as GCC or gcc-10.2.0 it needs to be modified in your .Py file

If you encounter an error message like this:

sqlalchemy.exc.OperationalError: (pysqlite2.dbapi2.OperationalError) database is locked [SQL: u'INSERT INTO tuning_run (uuid, program_version_id, machine_class_id, input_class_id, name, args, objective, state, start_date, end_date, final_config_id) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)'] [parameters: ('b3311f3609ff4ce9aa40c0f9bb291d26', 1, None, None, 'unnamed', 
   
   
    
    , 
    
    
     
     , 'QUEUED', '2021-xx-xx 03:42:04.145932', None, None)] (Background on this error at: http://sqlalche.me/e/e3q8)

    
    
   
   

Just delete the DB file saved before (PATH:/examples/gccflags/opentuner.db/Your PC's Name.db).

Install Compiler

GCC

Check to see if the compiler is installed

e.g.

gcc -v  shows that
gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)

Please note that there have different optimization options in different versions of compilers.

If you use the optimization options that are not included in this version of the compiler, the program can not run and report an error.

It is strongly recommended to confirm that the optimization options are in the official instructions of GCC or LLVM before using them.

e.g. GCC version 10.2.0.

You can also use the command to display all options in terminal

gcc --help=optimizers


The following options control optimizations:
  -O
   
   
    
                      Set optimization level to 
    
    
     
     .
  -Ofast                      Optimize for speed disregarding exact standards
                              compliance.
  -Og                         Optimize for debugging experience rather than
                              speed or size.
  -Os                         Optimize for space rather than speed.
  -faggressive-loop-optimizations Aggressively optimize loops using language
                              constraints.
  -falign-functions           Align the start of functions.
  -falign-jumps               Align labels which are only reached by jumping.
  -falign-labels              Align all labels.
  -falign-loops               Align the start of loops.
  ...


    
    
   
   

LLVM

clang -v

Check how to install LLVM here

https://apt.llvm.org/

https://clang.llvm.org/get_started.html

Checking Installation

Enter the following command in terminal to test:

[email protected]:~/BinTuner/examples/gccflags$ python main.py 2

You will see some info like this:

Program Start
************************ Z3 ************************
5- Result--> Unavailable
3- Result--> Available
[ Z3 return Results = first second True four False]
[ Changed "shrink-wrap" value ]
...
-------------------------------------------------

--- BinTuner ---
--- Command lines and compiler optimization options ---:
gcc benchmarks/bzip2.c -lm -o ./tmp0.bin -O3 -fauto-inc-dec -fbranch-count-reg -fno-combine-stack-adjustments 
-fcompare-elim -fcprop-registers -fno-dce -fdefer-pop -fdelayed-branch -fno-dse -fforward-propagate -fguess-branch-probability 
-fno-if-conversion2 -fno-if-conversion -finline-functions-called-once -fipa-pure-const -fno-ipa-profile -fipa-reference 
-fno-merge-constants -fmove-loop-invariants -freorder-blocks -fshrink-wrap -fsplit-wide-types -fno-tree-bit-ccp -fno-tree-ccp 
-ftree-ch -fno-tree-coalesce-vars -ftree-copy-prop -ftree-dce -fno-tree-dse -ftree-forwprop -fno-tree-fre -ftree-sink -fno-tree-slsr 
-fno-tree-sra -ftree-pta -ftree-ter -fno-unit-at-a-time -fno-omit-frame-pointer -ftree-phiprop -fno-tree-dominator-opts -fno-ssa-backprop 
-fno-ssa-phiopt -fshrink-wrap-separate -fthread-jumps -falign-functions -fno-align-labels -fno-align-labels -falign-loops -fno-caller-saves 
-fno-crossjumping -fcse-follow-jumps -fno-cse-skip-blocks -fno-delete-null-pointer-checks -fno-devirtualize -fdevirtualize-speculatively 
-fexpensive-optimizations -fno-gcse -fno-gcse-lm -fno-hoist-adjacent-loads -finline-small-functions -fno-indirect-inlining -fipa-cp 
-fipa-sra -fipa-icf -fno-isolate-erroneous-paths-dereference -fno-lra-remat -foptimize-sibling-calls -foptimize-strlen 
-fpartial-inlining -fno-peephole2 -fno-reorder-blocks-and-partition -fno-reorder-functions -frerun-cse-after-loop -fno-sched-interblock 
-fno-sched-spec -fno-schedule-insns -fno-strict-aliasing -fstrict-overflow -fno-tree-builtin-call-dce -fno-tree-switch-conversion 
-ftree-tail-merge -ftree-pre -fno-tree-vrp -fno-ipa-ra -freorder-blocks -fno-schedule-insns2 -fcode-hoisting -fstore-merging 
-freorder-blocks-algorithm=simple -fipa-bit-cp -fipa-vrp -fno-inline-functions -fno-unswitch-loops -fpredictive-commoning 
-fno-gcse-after-reload -fno-tree-loop-vectorize -ftree-loop-distribute-patterns -fno-tree-slp-vectorize -fvect-cost-model 
-ftree-partial-pre -fpeel-loops -fipa-cp-clone -fno-split-paths -ftree-vectorize --param early-inlining-insns=526 
--param gcse-cost-distance-ratio=12 --param iv-max-considered-uses=762
 -O3
--NCD:0.807842390787
---Test----
--Max:0
--Current:0
--Count:0
...

Results

The DB file saved in the PATH:/examples/gccflags/opentuner.db/Your PC's Name.db

Each sequence of compilation flags and the corresponding ncd value are saved in the db file.

Set up how many times to run

Please refer to the settings in main.py There are two strategies The default setting runs 100 times, if you want to modify it according to your own wishes this is ok. For example, by monitoring the change of NCD value in 100 times, if the cumulative change of 100 times increase is less than 5%, let's terminte it.

First-order formulas

We manually generate first-order formulas after understanding the compiler manual. The knowledge we learned is easy to move between the same compiler series---we only need to consider the different optimization options introduced by the new version.

We use Z3 Prover to analyze all generated optimization option sequences for conflicts and make changes to conflicting options for greater compiling success.

For more details, please refer Z3Prover.

Setting for Genetic Algorithm

The genetic algorithm is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms. Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover, and selection.

We tune four parameters for the genetic algorithm, including mutation_rate, crossover_rate, must_mutate_count, crossover_strength.

For more details, please refer globalGA.

Future Work

We are studying constructing custom optimization sequences that present the best tradeoffs between multiple objective functions (e.g., execution speed & NCD). To further reduce the total iterations of BinTuner, an exciting direction is to develop machine learning methods that correlate C language features with particular optimization options. In this way, we can predict program-specific optimization strategies that achieve the expected binary code differences.

Owner
BinTuner
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.
BinTuner
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyễn Quang Huy 5 Sep 28, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021