Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Overview

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking
Hau Chu, Jia-Hong Lee, Yao-Chih Lee, Ching-Hsien Hsu, Jia-Da Li, Chu-Song Chen
2021 CVPR B-AMFG Workshop

Note: It's a project of AI^2 Lab. The code will be update in here while there is a new version.

Installation

  • Python 3.6+

  • Cuda 9.0

  • Cudnn 7

  • gcc 5 & g++ 5 (for Ubuntu 18.04)

$ sudo apt install gcc-5 g++-5
$ sudo ln -s /usr/bin/gcc-6 /usr/local/bin/gcc
$ sudo ln -s /usr/bin/g++-6 /usr/local/bin/g++
  • Conda Env
$ conda create -n venv python=3.6
$ conda activate venv
$ conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
$ pip install tensorflow_gpu==1.9.0
$ pip install -r requirements.txt
  • Git
$ sudo apt install git

Data preparation

Download datasets:

  1. Campus (http://campar.in.tum.de/Chair/MultiHumanPose)
  2. Shelf (http://campar.in.tum.de/Chair/MultiHumanPose)
  3. CMU Panoptic (https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox)

Dataset's camera_parameter.pickle download

The directory tree should look like below:

${ROOT}
    |-- CatchImage
        |-- CampusSeq1
        |   |-- Camera0
        |   |-- Camera1
        |   |-- Camera2
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Shelf
        |   |-- Camera0
        |   |-- ...
        |   |-- Camera4
        |   |-- camera_parameter.pickle
        |   |-- actorsGT.mat
        |-- Panoptic
        |   |-- 160906_pizza1
            |   |-- 00_03 # hdImgs folder of 03 camera
            |   |-- 00_06 # hdImgs folder of 06 camera
            |   |-- ...
            |   |-- camera_parameter.pickle
            |   |-- hdPose_stage1_coco19
            |-- ...
    |-- src

Backend Models

Backend models, which is not our works, are released codes from others. We only did some small modifications to fit the format of our input/output. Put models in {ROOT}/src/backend

  1. YOLOv3
  2. HRNet

Run Codes

Demo

$cd src
python -W ignore testmodel.py --dataset CampusSeq1 # For Campus
python -W ignore testmodel.py --dataset Shelf # For Shelf
python -W ignore testmodel.py --dataset Panoptic # For Panoptic (sub-dataset can be modified in config)

Evaluation

$cd src
python -W ignore evalmodel.py --dataset CampusSeq1 
python -W ignore evalmodel.py --dataset Shelf

Campus PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 100.00 100.00 100.00 100.00
Torso 100.00 100.00 100.00 100.00
Upper arms 98.98 100.00 100.00 99.66
Lower arms 92.86 68.78 91.30 84.31
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 98.37 93.76 98.26 96.79

Shelf PCP Score

Bone Group Actor 0 Actor 1 Actor 2 Average
Head 94.98 100.00 91.30 95.43
Torso 100.00 100.00 100.00 100.00
Upper arms 100.00 100.00 96.27 98.76
Lower arms 98.21 77.03 96.27 90.50
Upper legs 100.00 100.00 100.00 100.00
Lower legs 100.00 100.00 100.00 100.00
Total 99.14 95.41 97.64 97.39

Citation

@InProceedings{Chu_2021_CVPR,
    author    = {Chu, Hau and Lee, Jia-Hong and Lee, Yao-Chih and Hsu, Ching-Hsien and Li, Jia-Da and Chen, Chu-Song},
    title     = {Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {1472-1481}
}
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Özlem Taşkın 0 Feb 23, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022